



An Introduction to Meta-Analysis With R

Calum MacGillivray, PhD Student (Education), University of Dundee

c.y.macgillivray@dundee.ac.uk | [University Profile](#) | [ORCiD](#)



University
of Dundee

Scottish Graduate School
of Social Science
Sgoil Cheumnaichean Saidheans
Sòisealta na h-Alba

Housekeeping

- Breaks: we will take a short break every hour and an hour for lunch from 12:00-13:00
- In the morning we will be talking about the theory behind meta-analysis and getting started with R
- In the afternoon we will get more hands on with the code
- Questions: we will stop regularly for questions but if you have any as we go then feel free to jump in, raise your hand or put them in the chat.
- Afterwards: feel free to email me with any questions: c.y.macgillivray@dundee.ac.uk
- Resources for this workshop, including the notebook with the annotated code, data files, further reading and this presentation can be found on my website here:
<https://calummacgillivray.github.io/Training/>

A Quick Note on Jupyter Notebooks and Colab

- We will be working from a Jupyter Notebook hosted by Google Colab
- Jupyter Notebooks are great for sharing code as you can write in legible text around the chunks of code. This makes it easier to follow.
 - When aesthetic legibility is less of a concern I tend to work directly in Rstudio. The code works the same regardless.
- Google Colab allows us to run R code without having R installed on the browser which is very helpful and prevents technical issues
 - You just need a Google account
- You can find the interactive notebook with the code here:
https://colab.research.google.com/github/calummaccgillivray/calummaccgillivray.github.io/blob/main/Meta_Analysis_jupyter.ipynb

Introductions

Who am I?

Name: Calum MacGillivray

University: University of Dundee, School of Humanities, Social Science and Law

Discipline: Education (with a developmental psychology background)

PhD Project: Primary-secondary transitions experiences and associated educational outcomes

Now who are you?

What's your name? | Your discipline/background? | What are you working on?

What do you know already?

- What is meta-analysis?
- Why might you conduct it?
- Have you done any?
- What do you hope to get out of today?

Learning Outcomes

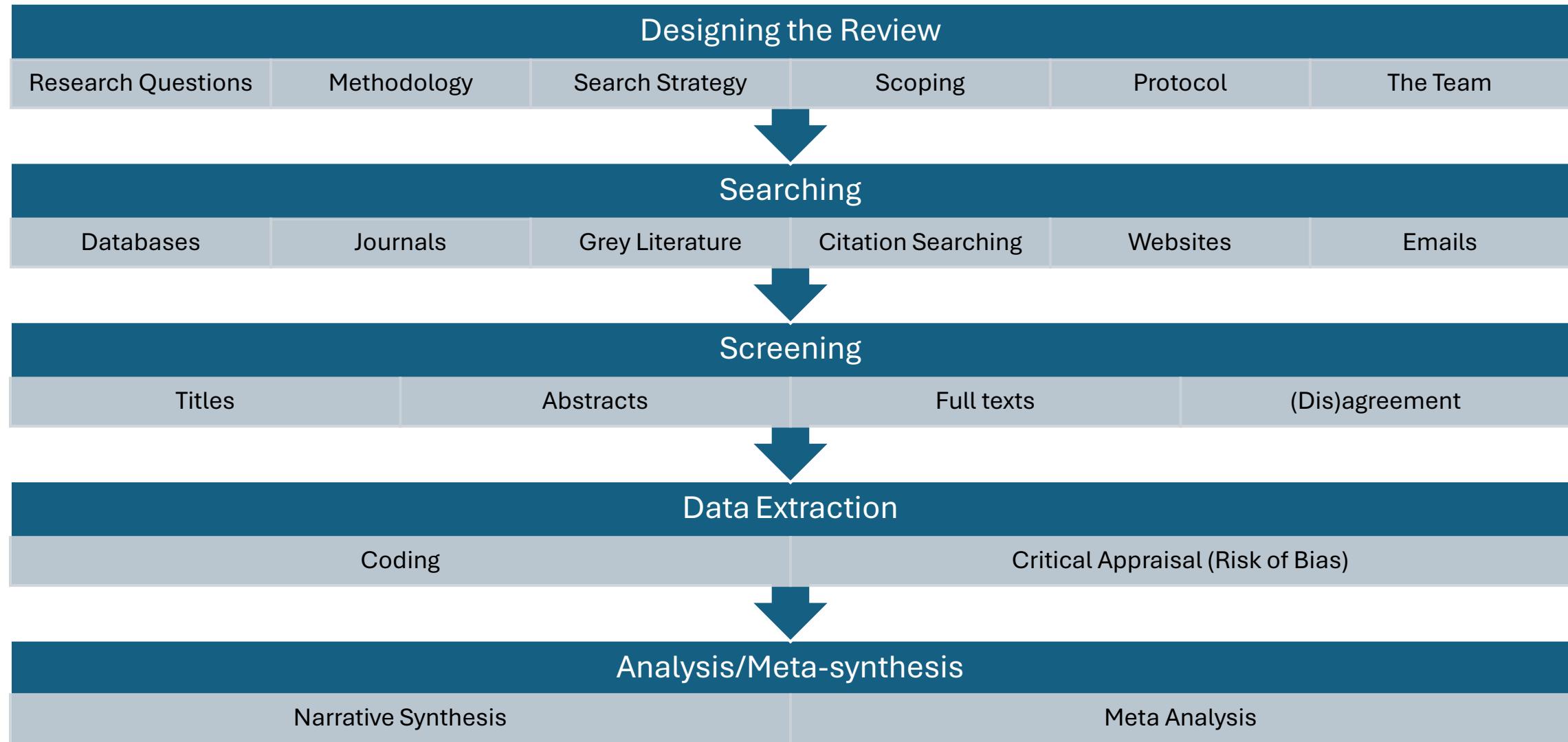
Feel more confident in understanding and conducting meta-analysis by:

- Understanding the basics of how meta-analysis works and when to conduct it
- Understanding how effect sizes are calculated and the data you require for meta-analysis
- Building knowledge of various methods in R to conduct meta-analysis
- Learning how to build a forest plot to visualise meta-analyses with R

A Note on Terminology

- Literature Review
- Systematic Review
- Rapid Review
- Review of Reviews/Umbrella Review
- Mapping review
- Scoping Review
- Meta-synthesis
- Meta analysis
- Narrative synthesis

An Anatomy of a Systematic review



A brief (and incomplete) history

1975: Meta-Analysis
(psychotherapy)

Archie Cochrane:
evidence based
medicine

Cochrane
Systematic Reviews:
health care
intervention efficacy

Cambell
Collaboration:
public policy scope

EPPI Centre:
education and
welfare

QUOROM, then
PRISMA: reporting
guidelines

Addressing the Replication Crisis

2011 – a bad year for psychology

- Precognition – dubiously published
- Diedrik Stapel – fabricating data
- Using common methods to argue that listening to a song could reduce a participant's age – to prove a point
- Name-letter effect – failed to replicate
- Many studies suffer from large amounts of unrecognised bias

The result: “Crisis of Confidence”

But this is not limited to psychology

- Dubious practice exists across scientific disciplines

Wiggins, B. J., & Christopherson, C. D. (2019). The replication crisis in psychology: An overview for theoretical and philosophical psychology. *Journal of Theoretical and Philosophical Psychology*, 39(4), 202–217. <https://doi.org/10.1037/teo0000137>

Pashler, H., & Wagenmakers, E. (2012). Editors' Introduction to the Special Section on Replicability in Psychological Science: A Crisis of Confidence? *Perspectives on Psychological Science*, 7(6), 528–530. <https://doi.org/10.1177/1745691612465253>

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. *Nature*, 533, 452–454. <https://doi.org/10.1038/533452a>

Bias

- Bias from incorrectly applied (or understood) methodology
 - Failure to address confounding factors
 - Faulty metrics
 - Participant selection
 - Missing data
 - Misinterpretation
 - Congruity between philosophical, theoretical, and methodological approach
- Publication bias (the file drawer problem)

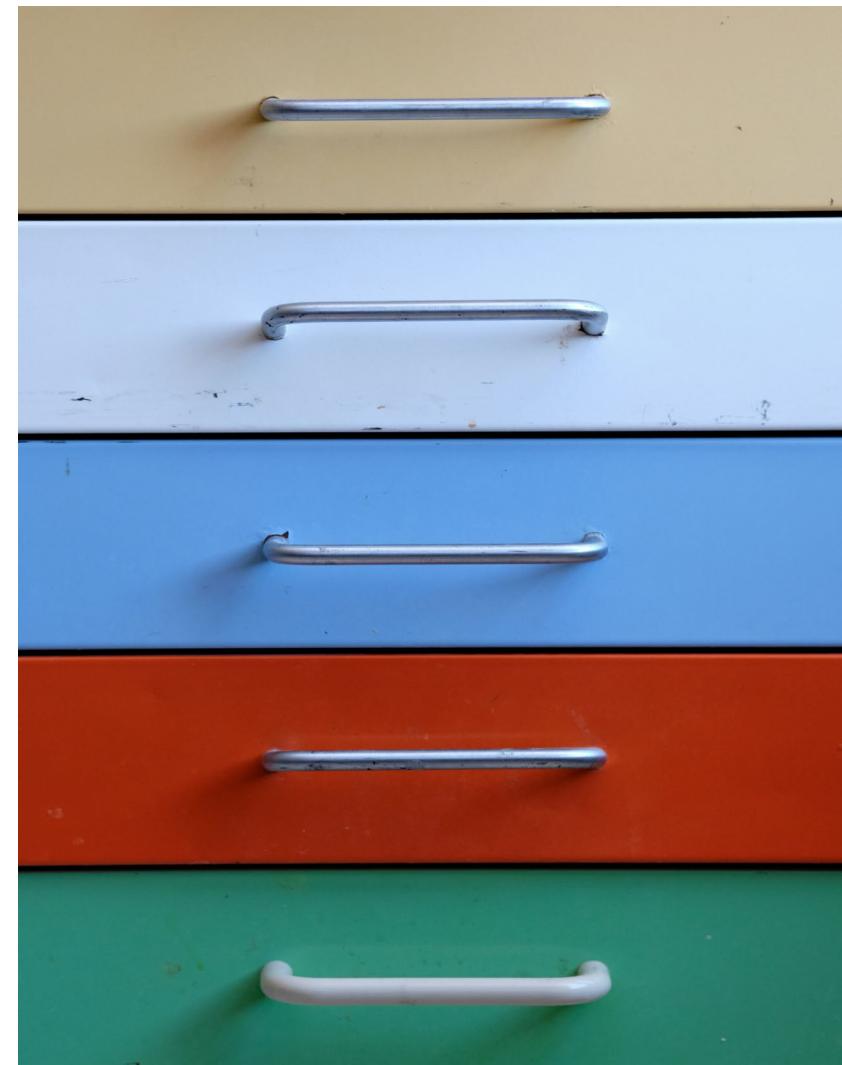


Photo by [Drew Beamer](#) on [Unsplash](#)

Addressing the Replication Crisis

- Systematic reviews pre-date the replication crisis
 - Rubbish in > Rubbish out
- But can begin to address the file drawer problem
- Can also make informed decisions on what to include
 - Exclusion
 - Weighting
- Can be a tool for systematic, rigorous critique
- Can highlight the methodological shortcomings/strengths in the literature
- Can assess risk of bias

Photo by [Evan Demicoli](#) on [Unsplash](#)

Synthesis of the literature

- Bringing together findings
- Creating a new perspective
- Can cover any methodology
 - Quantitative
 - Qualitative
 - Mixed Methods
- Narrative Synthesis
- Meta Analysis
- Carefully consider what you are bringing together
- Don't accidentally equate apples with oranges!

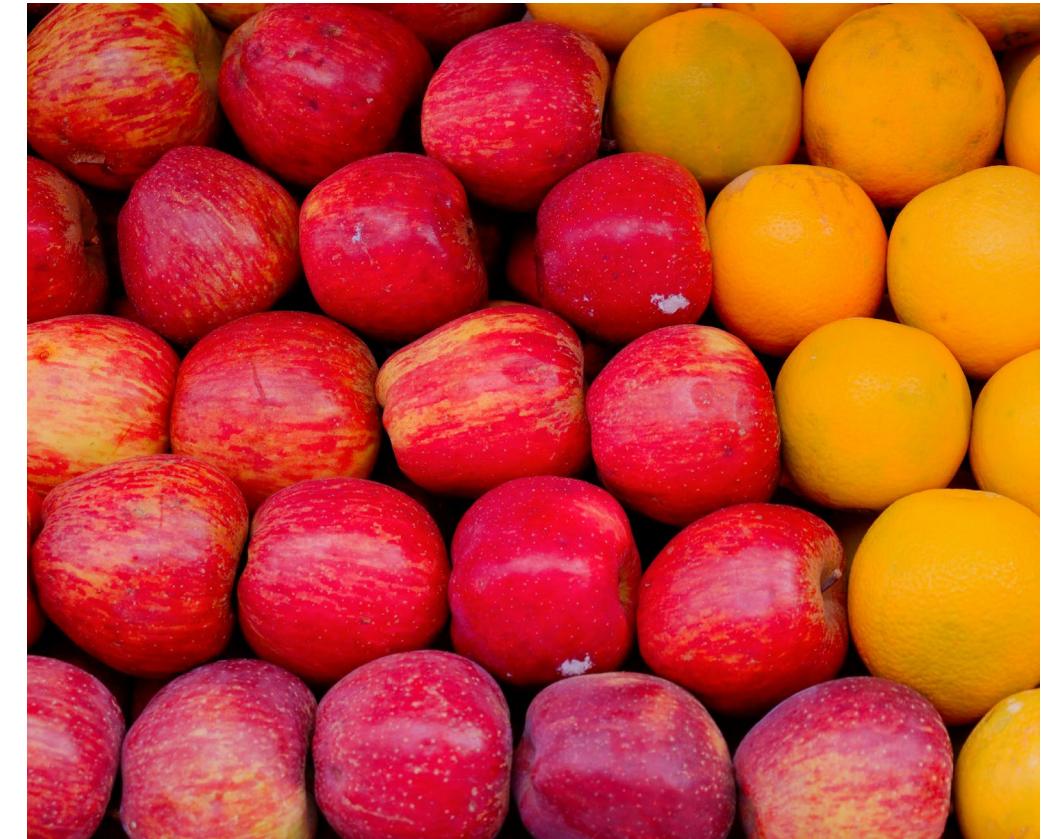


Photo by [Gowtham AGM](#) on [Unsplash](#)

But this is not a systematic
review workshop!

Meta-Analysis as Part of a Systematic Review

- The point of meta-analysis is usually to pool effect sizes across different studies with the aim of investigating a common effect
- Through combining the rigorously gathered data, you gain the benefit of combining the work across many studies
- Problem 1: The Completeness of the Data
- Problem 2: The File Drawer Problem
- Problem 3: Comparing Apples and Oranges
- Problem 4: Rubbish In -> Rubbish Out
- Solutions?
 - Systematic approach, rigour and critical appraisal
 - Scoping: sometimes meta-analysis is not the right choice
 - The “I have a hammer so every problem looks like a nail” problem

Photo by [Wisnu Amaludin](#) on [Unsplash](#)

Effect sizes

- Meta-analysis pools effect sizes
- An effect size is a measure of the magnitude of a relationship
- A p-value can suggest if a relationship is unlikely to be random, supporting evidence to refute a null hypothesis – however it says nothing about the scale of that relationship
 - That is where the effect size comes in
 - A classic example is Cohen's d
 - We can approximate from this value the magnitude of the effect
 - A rough reckoner is:
 - 0.2 = small effect
 - 0.5 = medium effect
 - 0.8 = large effect
 - From one study we would call this the observed effect
 - We will look at calculating different effect sizes later, although often we only need the data for calculating the effect sizes rather than the effect sizes themselves

Fixed Effects Meta-Analysis

- For fixed effects meta-analysis we take the stance that the observed effect ($\hat{\theta}_k$) from each study differs from the true effect (θ) because of sampling error (ϵ_k): $\hat{\theta}_k = \theta + \epsilon_k$
 - True effect = the actual underlying effect across samples i.e. the thing the meta-analysis intends to estimate
 - Observed effect = an effect size from a single study
 - Sampling error = the unrepresentativeness of our sample

Fixed Effects Meta-Analysis

- The lower the standard error of an effect size the more precise it is at estimating the effect size, this is directly related to sample size.
 - As such to pool effects across studies we weight them by standard error
 - To calculate the weight for each study (w_k) we divide 1 by the variance (standard error squared; s_k^2): $w_k = \frac{1}{s_k^2}$
- Our final model then takes the sum of each effect size multiplied by its weight: $\sum_{k=1}^K \hat{\theta}_k w_k$
- Then we divide that by the sum of all the weights: $\sum_{k=1}^K w_k$
- Altogether this looks like: $\frac{\sum_{k=1}^K \hat{\theta}_k w_k}{\sum_{k=1}^K w_k}$

Fixed Effects Meta-Analysis

- Technically speaking we ran through the inverse variance approach, however when dealing with sparse binary data we may want to weight differently by using either:
 - The Mantel-Haenszel approach
 - The Peto Approach
 - Bakbergenuly's method
- You can find out more here: <https://doing-meta.guide/pooling-es#binary-outcomes>

Random Effects Meta-Analysis

- But what if there is more causing differences between studies than just sampling error?
- What if outcomes are slightly measured differently?
- Or the intended population varies?
- Or an intervention is delivered in a slightly different way?
- Or any other numbers of potentially biasing factors is in play?
- This means that the true effect that each study is trying to measure will be slightly different.
 - This difference is known as between study heterogeneity
- To account for this we need a more complex model than: $\hat{\theta}_k = \theta + \epsilon_k$

Random Effects Meta-Analysis

- In random effects meta-analysis we no longer assume each study differs from one true effect by sampling error.
- Rather we anticipate a distribution of many true effects, the mean of which is denoted as μ .
- Additionally as well as sampling error (ϵ_k) we also anticipate error that deviates from the mean of the distribution of effects (ζ_k).
- This gives us the equation for our true effect of interest: $\hat{\theta}_k = \mu + \zeta_k + \epsilon_k$
- A key assumption here is that the source of error (ζ_k) is entirely random.

Random Effects Meta-Analysis

- Our practical equation is similar to fixed effects however we use adjusted weights (denoted by asterisks):
$$\frac{\sum_{k=1}^K \hat{\theta}_k w_k^*}{\sum_{k=1}^K w_k^*}$$
- We calculate these adjusted weights through the addition of Tau-squared (τ^2) to the standard error squared (s_k^2) which we then divide 1 by: $w_k^* = \frac{1}{s_k^2 + \tau^2}$
- Therefore the key difference between fixed and random effects meta-analysis is the calculation of Tau-squared.

Tau-Squared

- There are many ways to estimate tau-squared and a decision will need to be made, this is worth reading into in depth:
 - The most common is by [DerSimonian and Laird](#) but may be more biased when there are few studies with high heterogeneity ([Hartung and Knapp, 2001](#)).
 - There is one by [Paule and Mandel](#) which performs well for binary and continuous data at low study numbers ([Bakbergenuly et al., 2020](#)).
 - The restricted maximum likelihood approach is also best suited to continuous outcomes ([Veroniki et al., 2016](#)).
 - [Sidik and Jonkman](#) provided an approach that is best suited when tau-squared is high.

Knapp-Hartung Adjustment

- The [Knapp-Hartung adjustment](#) can be used with random effects meta-analysis
 - This usually increases the confidence intervals and reduces the risk of a false positive.
 - This is usually done, but not always.

Random or Fixed Effects?

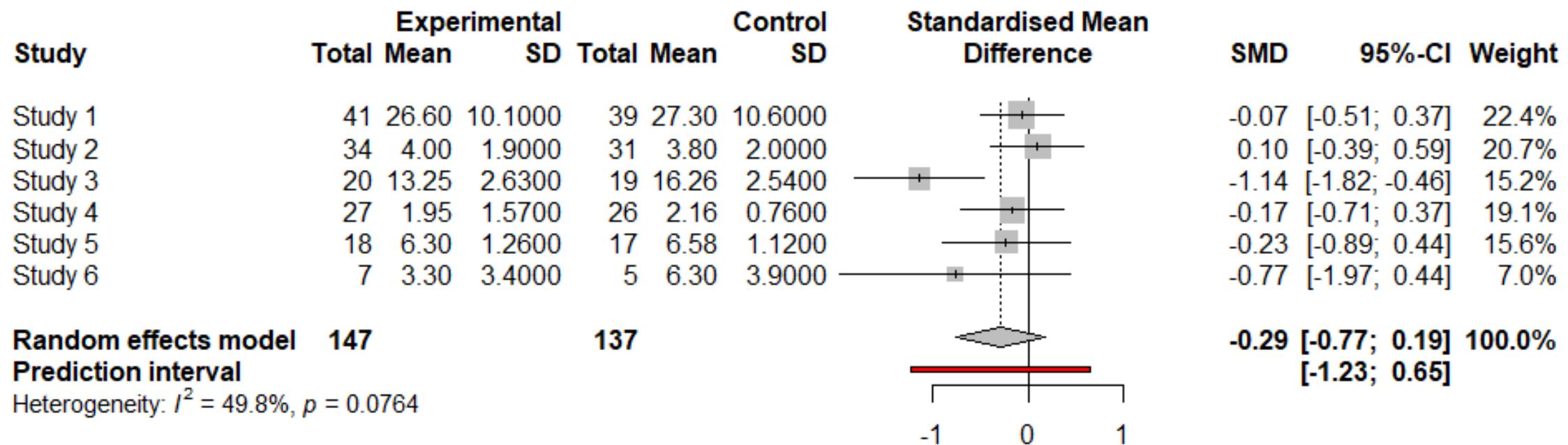
- The assumptions of the fixed effects model are difficult to meet in most situations, as was outlined previously.
- Therefore in many cases researchers, especially in the social sciences, decide to conduct random effects meta-analyses.
- However, there is an argument that random-effects meta-analyses can, in some cases, overemphasise small sample studies which may be more likely to include more biases ([Poole and Greenland, 1999](#)).

Assessing Heterogeneity

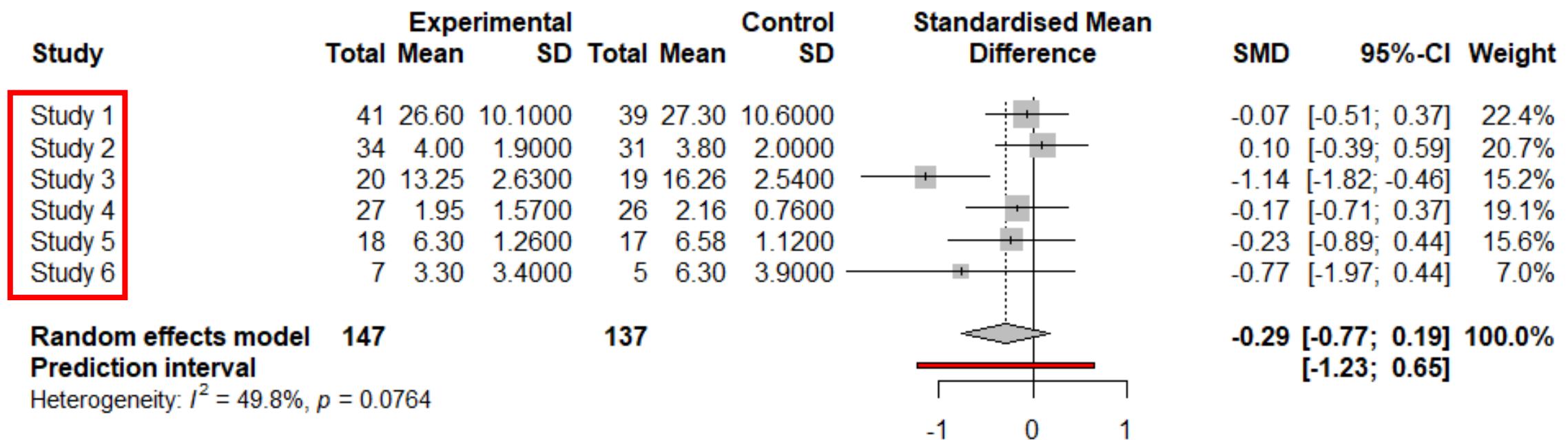
- Cochrane's Q – a chi-square test
 - to detect heterogeneity – on significant p-value
- Higgins and Thompson's I^2 – to quantify heterogeneity
- Tau-squared – forms the basis of random effects analyses
- According to the Cochrane handbook:
- Cochrane's Q is prone to bias at small study numbers, or sample sizes
 - A non-significant finding does not mean heterogeneity can be ruled out
 - At the extreme end – high numbers of studies can lead to unimpactful heterogeneity being detected
 - 0.1 (rather than 0.05) is often used as the threshold for this test
- For I^2
 - 0% - 40%: possibly less important
 - 30% - 60%: possibly moderate
 - 50% - 90%: possibly substantial
 - 75% - 100%: possibly considerable

Forest Plots – Example Data

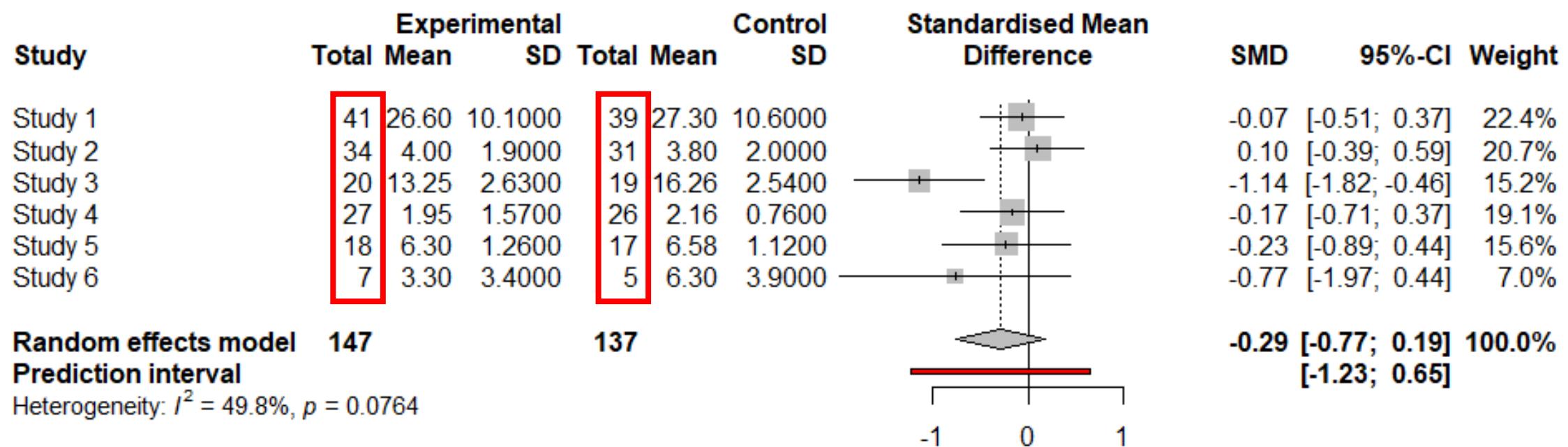
Simulating 6 studies comparing an outcome at T2 after an intervention for an experimental group vs a control group



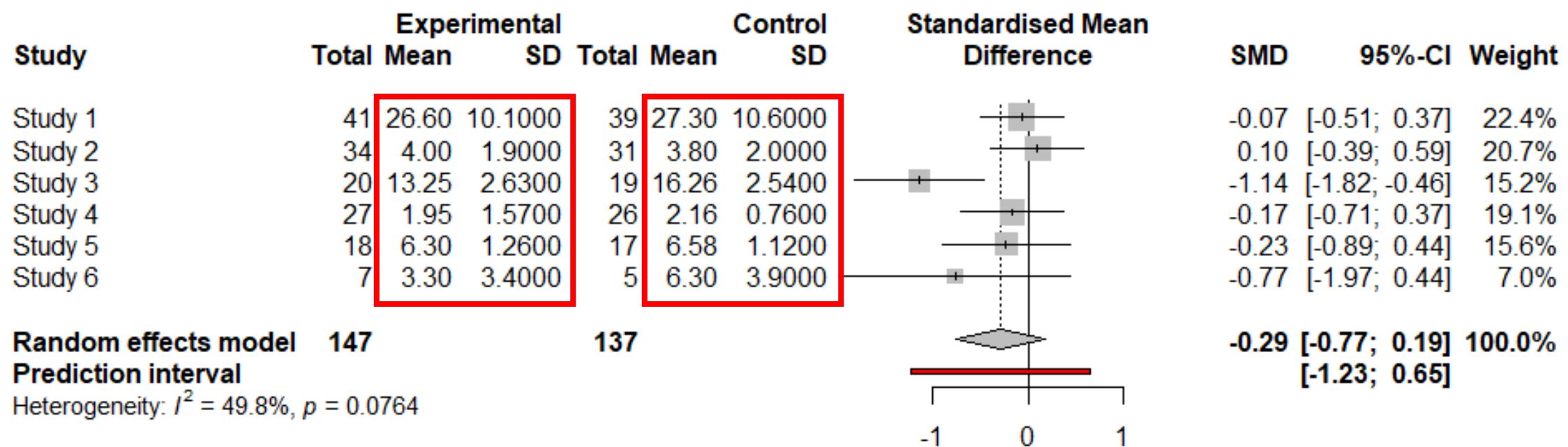
Forest Plots – Measures



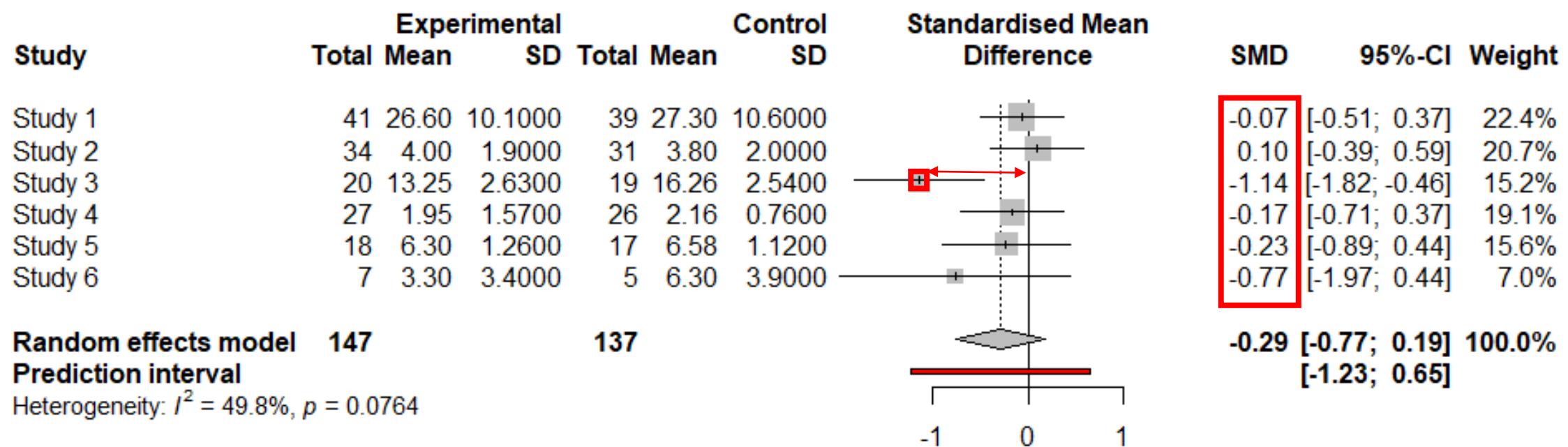
Forest Plots – Totals



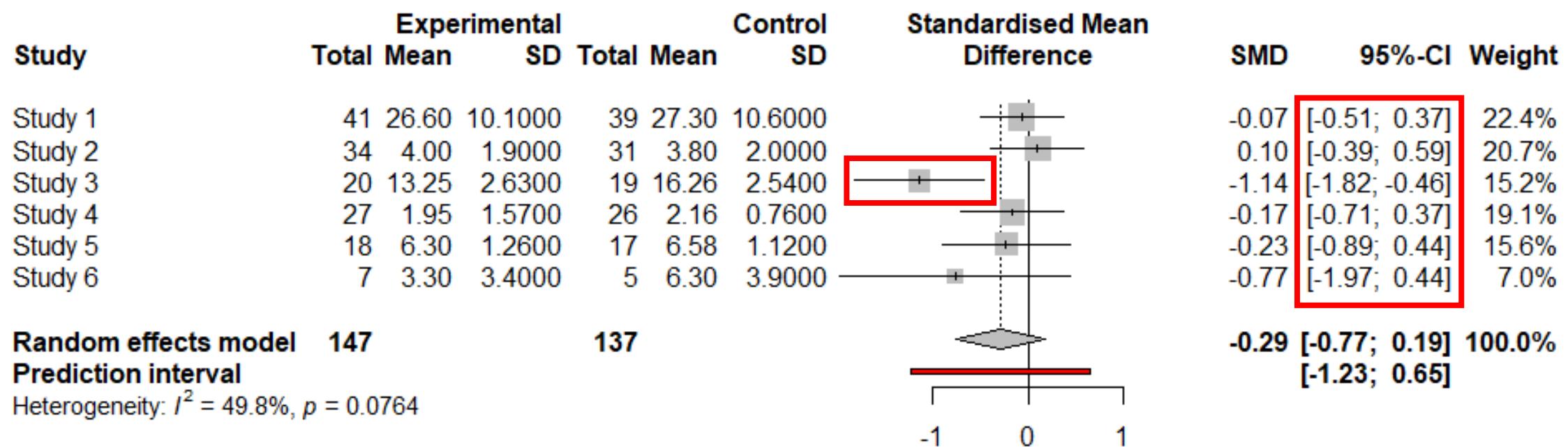
Forest Plots – Means and Standard Deviations



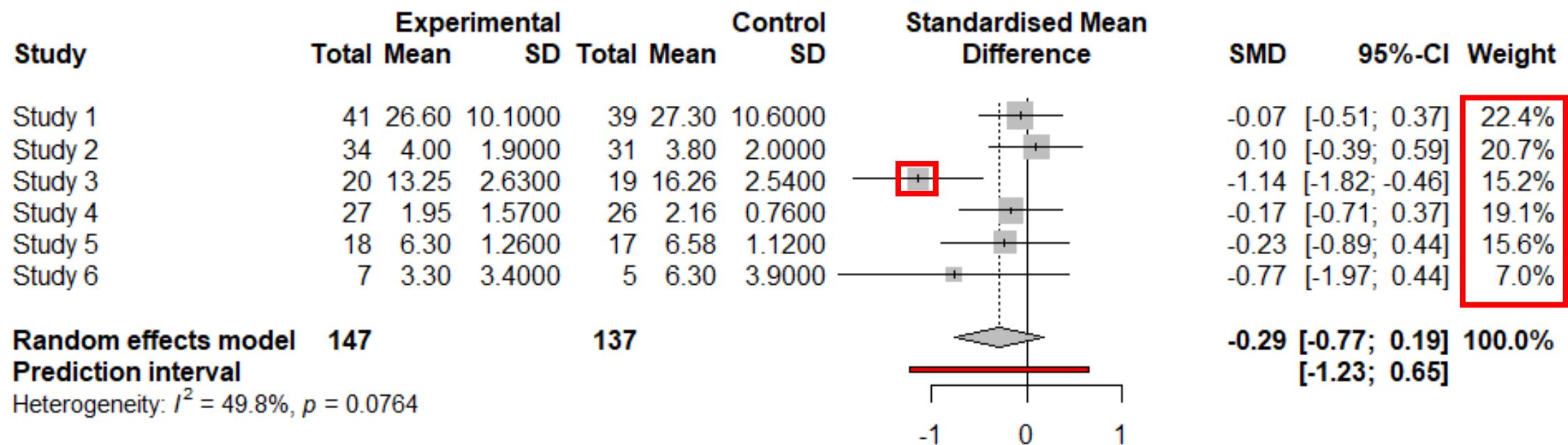
Forest Plots – Standardised Mean Difference



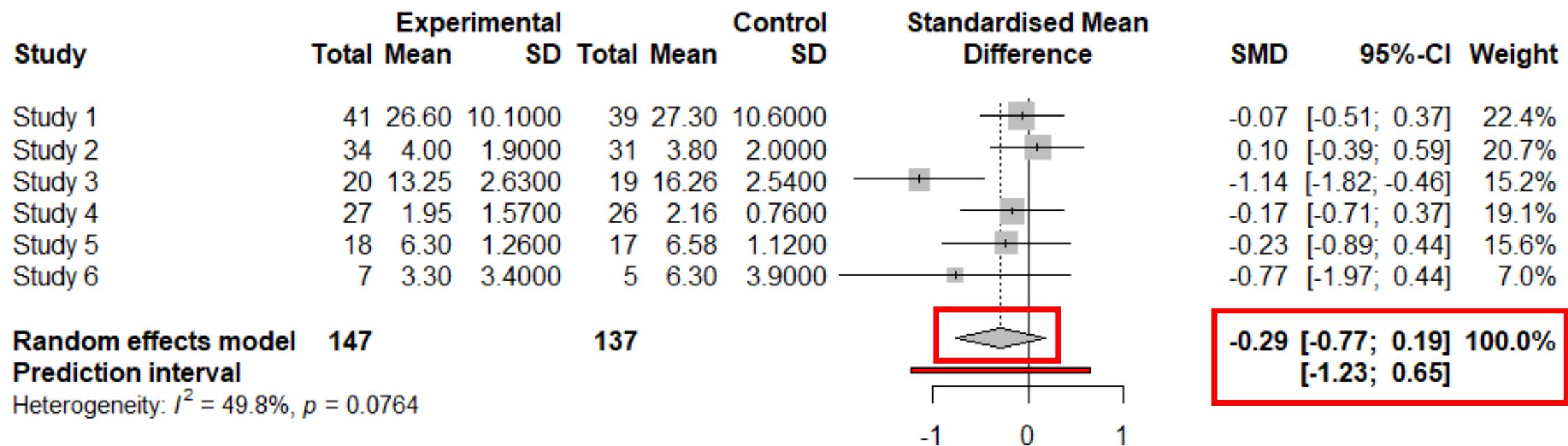
Forest Plots – Confidence Intervals



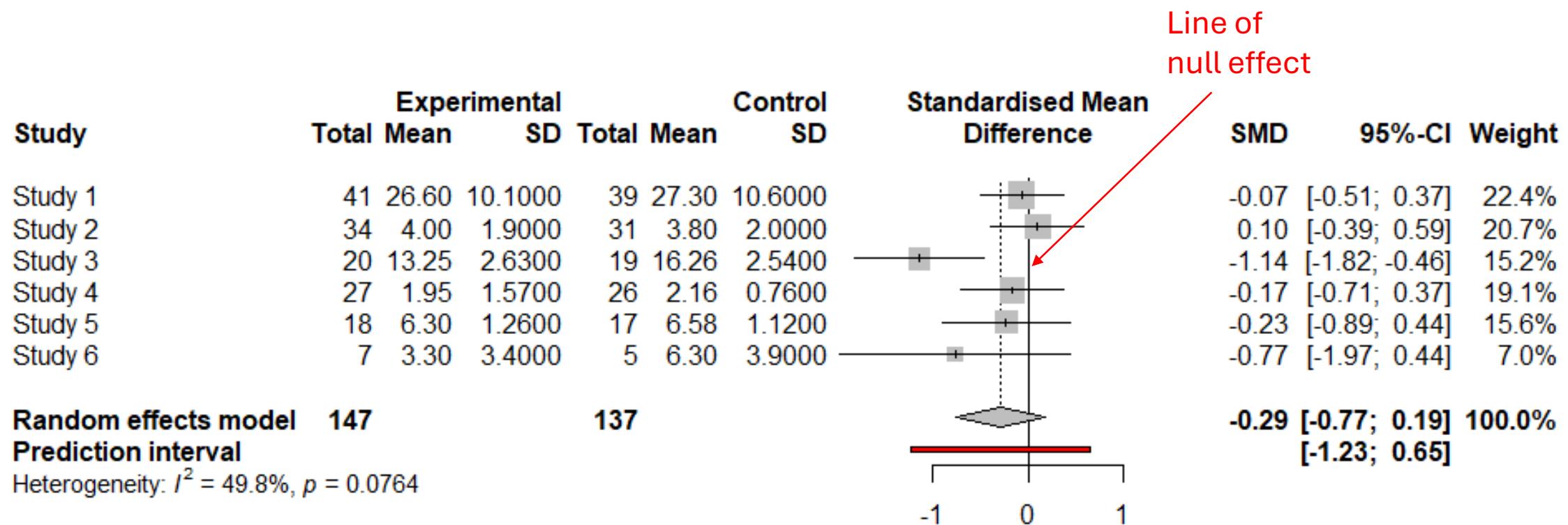
Forest Plots – Weighting



Forest Plots – Pooled Statistics



Forest Plots – Interpreting the Plot



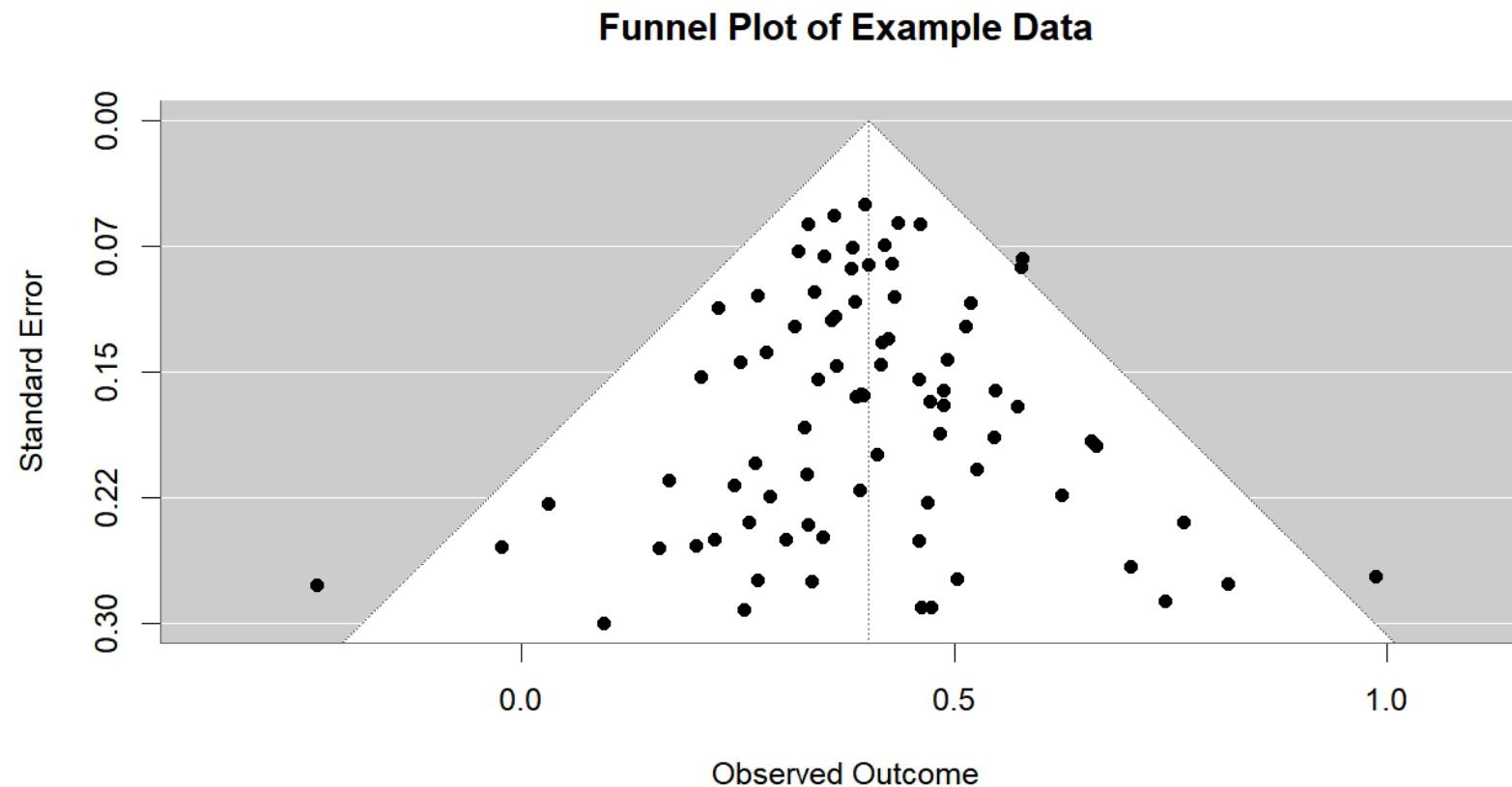
Publication Bias

- There are many ways to investigate publication bias
 - We won't have time to cover them all, and you can read more here:
<https://doing-meta.guide/pub-bias>
- Today we will talk about funnel plots and Egger's test which looks at the small study effect

Funnel Plots

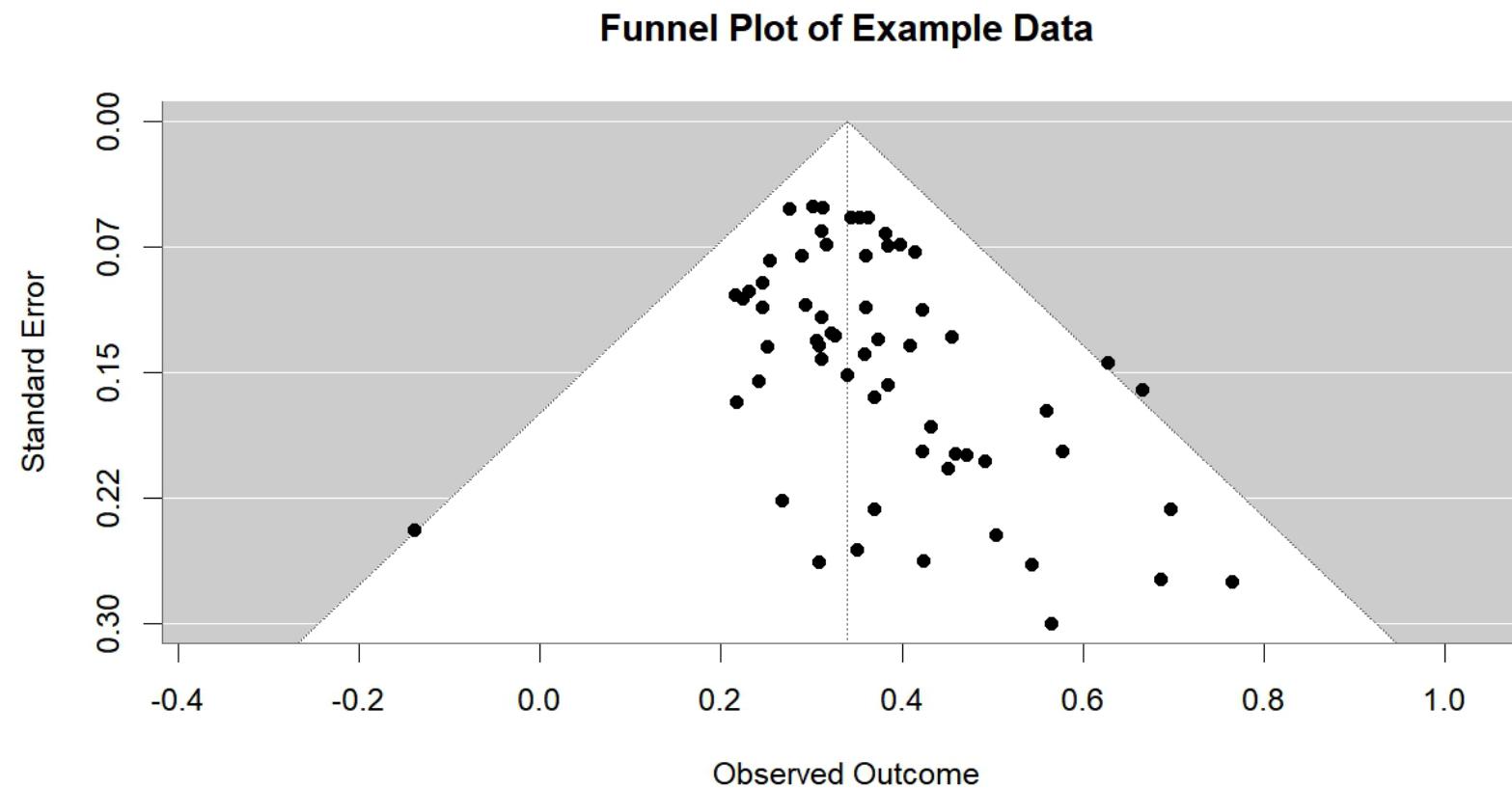
- Larger studies are more likely to be published - More resources are used
 - Sample size is related to standard error – higher sample leads to narrower SE and wider confidence intervals
 - Smaller studies less likely to find a significant finding
 - Non-significant studies are less likely to be published
- Funnel Plots – more studies is better (10+ at least)
 - Plotting effect sizes by Standardised mean difference and standard error
 - An exemplar expected funnel-shape in dotted lines
 - A middle line showing the average effect size
 - A symmetrical plot suggests publication bias is less likely
 - Can also look at contours related to significance

Funnel Plots



From example data, synthesised to be relatively symmetrical

Funnel Plots



From example data, synthesised to be less likely to be published if non-significant

Egger's Test

- Egger's test uses a regression model to investigate funnel plot asymmetry
- If the plot has a bite out of it, then it will certainly be asymmetrical
 - But the asymmetry is not often easy to notice – especially with fewer studies
 - A significant p-value indicates asymmetry
 - Too few studies makes this unreliable
 - We can never truly know if the pattern is truly caused by publication bias

Further Information

- These are some excellent resources:
 - The Cochrane Handbook is an excellent resource for information:
<https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current/chapter-10#section-10-10-2>
 - The Doing Meta-Analysis with R Guide is the only R guide you will ever need: <https://doing-meta.guide/>
 - PRISMA is brilliant for all things related to reporting your research:
<https://www.prisma-statement.org/>

